Your Voice, Our Headlines

Download Folkspaper App with no Ads!


A fast-growing newspaper curated by the online community.

A New State Of Matter Has Seemingly Been Discovered And That Is Through Black,"Superionic" Ice

  • tag_facesReaction
  • Tip Bones

Scientists just squeezed a water droplet between two diamonds and blasted it to star-like temperatures with one of the world's most powerful lasers. The result was a new and mysterious phase of water.

Called superionic ice, the “strange, black” water exists under the same pressures and temperatures as those at the center of Earth — a fact that could soon help researchers investigate the secrets buried inside the cores of other worlds.

Previously, researchers used shock waves to create this weird ice for just 20 nanoseconds before it dissolved. This new experiment marks the first time that scientists have created stable superionic ice that lasts long enough to be studied in detail. The researchers published their findings Oct. 14 in the journal Nature Physics.

“It was a surprise — everyone thought this phase wouldn’t appear until you are at much higher pressures than where we first find it,” study co-author Vitali Prakapenka, a geophysicist at the University of Chicago and a beamline scientist at the Advanced Photon Source at Argonne National Laboratory, said in a statement.

Liquid, vapor and ice are water’s most common phases, but water molecules can also settle into other arrangements that represent different phases. In fact, scientists have identified 20 phases of water ice — the different ways that bonded hydrogen and oxygen atoms can stack under varying temperatures and pressures.

The superhot and highly pressurized superionic ice is the 18th phase of ice to be discovered, and it’s one of the weirdest yet. That’s because its oxygen atoms lock into place as they would in a solid, but its hydrogen atoms, after giving up their electrons, become ions — atomic nuclei stripped of their electrons and therefore positively charged — that are free to flow through the ice as if they were a fluid.

“Imagine a cube, a lattice with oxygen atoms at the corners connected by hydrogen,” Prakapenka said. “When it transforms into this new superionic phase, the lattice expands, allowing the hydrogen atoms to migrate around while the oxygen atoms remain steady in their positions. It’s kind of like a solid oxygen lattice sitting in an ocean of floating hydrogen atoms.”

These swimming hydrogen atoms block light from passing through the ice in a predictable way, giving it its black appearance.